Latest News
May 12, 2010
By Quickparts
Designing plastic parts is a complex task involving many factors that address a list of requirements of the application. “How is the part to be used?” “How does it fit to other parts in the assembly?” “What loads will it experience in use?” In addition to functional and structural issues, processing issues play a large role in the design of an injection molded plastic part. How the molten plastic enters, fills, and cools within the cavity to form the part largely drives what form the features in that part must take. Adhering to some basic rules of injection molded part design will result in a part that, in addition to being easier to manufacture and assemble, will typically be much stronger in service. Dividing a part into basic groups will help you to build your part in a logical manner while minimizing molding problems. As a part is developed, always keep in mind how the part is molded and what you can do to minimize stress.
1. Draft
Most injection molded plastic parts include features such as outside walls and internal ribs that are formed by opposing surfaces of tool metal inside a closed mold. To properly release the part when the mold opens, the side walls of the mold are tapered in the direction that the mold opens. This tapering is referred to as “draft in the line of draw”. This draft allows the part to break free of the mold as soon as the mold opens. The amount of draft required can depend on the surface finish of the mold. A smooth, polished tool surface will allow the part to eject with less draft than a standard tool surface.
2. Sink Marks
When the hot melt flows into the injection mold, the thick sections don’t cool as fast as the rest of the part because the thicker material becomes insulated by the outside surface of faster cooling plastic. As the inner core cools, it shrinks at a different rate than the already cooled outer skin. This difference on cooling rates causes the thick section to draw inward and create a sink mark on the outside surface of the part. In addition to being unattractive, the mark also represents added stress that is built into the part.
3. Parting Lines
A “parting line” is the line of separation on the part where the two halves of the mold meet. The line actually indicates the parting “plane” that passes through the part. While on simple parts this plane can be a simple, flat surface, it is often a complex form that traces the perimeter of the part around the various features that make up the part’s outer “silhouette”. Part lines can also occur where any two pieces of a mold meet. This can include side action pins, tool inserts and shutoffs. Parting lines cannot be avoided; every part has them. Keep in mind when designing your part that the melt will always flow towards the parting line because it is the easiest place for the displaced air to escape or “vent”.
Keep these factors in mind when designing your injection molded part, and remember that it is easier to avoid problems in the beginning than change your design down the line.
Subscribe to our FREE magazine,
FREE email newsletters or both!Latest News
About the Author
DE EditorsDE’s editors contribute news and new product announcements to Digital Engineering.
Press releases may be sent to them via [email protected].