DE · Topics · Resources · Additive Manufacturing · Sponsored Content

Reduced Mass By 53% to 76% on Three Realistic Aerospace Components

Developed an Advanced 3D Shape Optimization Method and Related Software to Automatically Generate Lightweight Core Structures for the Aviation Industry.

PROBLEM

The design of 3D core structures is a major consideration in the production of highly engineered, lightweight components such as those common in aerospace applications. Core structures serve two critical functions: they provide a solid base for depositing other structural materials, and they serve as a skeletal structure that contributes to the load bearing capacity of the final part.

The complexity of both the manufacturing and in-use forces experienced by the core structures prevents the use of existing computational approaches for shape and topology optimization. Hence, existing approaches to designing core structures either cannot take advantage of the design opportunities enabled by additive manufacturing, or they produce over-engineered solutions using ordinary lattice structures.

OBJECTIVE

The objective of this project was to reduce design times for structurally optimal 3D core structures. The design time aimed to be an order of magnitude reduction from days to hours.

A further objective was the simultaneous reduction in fabrication (print) time and material usage through co-optimization of the design and 3D printing process. A substantial increase in geometric freedom for the target shapes offers the potential for major reductions in life-cycle energy costs for operational vehicles containing the proposed core structures due to reduced weight.

Fill out the information below to download the resource.

By downloading this content, I agree to receive the DE 24/7 Newswire, a twice weekly free email newsletter (you may choose to opt-out in the newsletter).

Latest News

Spatial Unveils Updates Across Product Portfolio
Updates focused on workflow efficiency and increased automation capabilities, company says.

Cosmetic Packaging Gets 3D Printed Upgrade
Baralan leverages Stratasys' technology to for creative packaging designs for high-end cosmetic brands, enhancing product personalization and sustainability, Stratasys reports.

GFT, NVIDIA Collaborate on AI-Based Manufacturing Apps
GFT will leverage NVIDIA AI and Omniverse tools to create visual and quality inspection applications for manufacturing. The company can...

AMD Powers Fast Supercomputer, El Capitan
El Capitan touted as the first exascale-class machine for the National Nuclear Security Administration (NNSA) stands as a computing resource...

New Program Empowering Women in 3D Printing Launches
The initiative kicks off with a dress debut and a roundtable featuring prominent female designers and creators, including FashionTech designer...

Stratasys 3D Printing Integrated in Wind Turbine Design
Gulf Wind Technology has reduced the design and fabrication cycle for wind tunnel models, according to Stratasys.

All posts