DE · Topics · Resources · Engineering Computing · Sponsored Content

Predict 3D Printed Cellular Material Stiffness and Failure Response

Shape Independent Models Predict Behavior of 3D Printed Cellular Materials with 90% Accuracy.

PROBLEM

Despite the ability to design and manufacture cellular materials and structures with additive manufacturing, companies are reluctant to implement these in criticalto- function applications due to the large uncertainties in performance.

The challenge in predicting cellular material behavior stems partly from the uncertainty attributable to the process itself, and partly due to the difficulties fundamentally intrinsic to cellular materials, such as shape and size dependence, junction effects, and nonuniform stress and damage states.

The use of bulk material properties disregards behavior that includes these effects, and the use of homogenization techniques is limited due to their inherent, empirical dependence on shape.

OBJECTIVE

While previous work homogenized behavior on the cellular level, this project sought to go a level deeper and extract data at a material level. The objective of this project was to develop analytical equations that could be used not merely to study the effective performance of cellular structures, as is commonly done in literature, but also to extract a point-wise material property that is cell-shape independent.

The primary workforce and education goal of this project was to develop a pilot online, living textbook in additive manufacturing, for and by the members of America Makes.

Fill out the information below to download the resource.

By downloading this content, I agree to receive the DE 24/7 Newswire, a twice weekly free email newsletter (you may choose to opt-out in the newsletter).

Latest News

AM Rides On-Demand Manufacturing Wave
Manufacturers step up use of on-demand models, leveraging AM to enable responsiveness to shifting market demands while gaining more design...

JPR Releases Summary on GPU Market
Global market at present stands at nearly $100 billion, according to Jon Peddie Research.

Phase3D Launches Fringe Qualification
Product said to aid in real-time production control in additive manufacturing.

FREE WEBINAR NOV. 21: How to Use Large-Format 3D Printing for Engineering Success
In this webinar, learn about the key considerations for transitioning to large format 3D printing systems, including scenarios where large-format...

BMW i Ventures Invests in Cloud Simulation Company
Simr offers engineers a single platform for using any compute resources with any leading simulation tool.

Caracol Launches Vipra AM at Formnext 2024
New robotic large-format metal directed energy deposition platform to be unveiled in Frankfurt.

All posts