HyperX Software from Collier Aerospace Sizes Composite Wind Blade

Software helps Korean team evaluate feasibility of replacing e-glass with flax fibers to enhance sustainability of small wind turbine blades.

Software helps Korean team evaluate feasibility of replacing e-glass with flax fibers to enhance sustainability of small wind turbine blades.

Collier Aerospace used HyperX software to define materials and ply layups and determine dimensions to help ensure the blade met all of the team’s performance requirements. Image courtesy of Collier Aerospace.


In conjunction with the launch of its new HyperX structural analysis and design software Collier Aerospace Corp. is spotlighting the tool’s real-world application in sizing a 7.4-m natural fiber composite wind turbine blade. The blade’s development was a collaboration between the Department of Naval Architecture and Ocean Engineering at Hongik University in South Korea and Samwon Millennia, Inc., a software reseller.

The aim was to evaluate the viability of replacing E-glass fiber with natural plant-based flax fiber reinforcement to reduce the environmental impact of end-of-life blades. 

Collier Aerospace used HyperX software to define materials and ply layups and determine dimensions to help ensure the blade met all of the team’s performance requirements. The new software was used throughout the blade’s structural design stages, including laminate stacking sequences, ply boundaries and layup stacking order. 

“The impressive functionality of Collier Aerospace’s HyperX software made an incredible difference in the design and development of the natural fiber composite wind turbine blade,” says Professor Yeonseung (Y.S.) Lee of Hongik University. “Since the software optimizes all requirements at once rather than one at a time, it enabled our team to arrive at a workable solution quickly despite the lower mechanical properties of the natural materials.”

“Design requirements for this wind blade project included cost-effectiveness and reliability at a minimum weight to help maximize annual energy production,” says James Ainsworth, director of Engineering for Collier Aerospace. “Our biggest challenge was meeting performance requirements with natural fiber composites, which do not provide as much stiffness and strength in epoxy resin as E-glass fibers. Using HyperX software, we provided design assistance in optimizing the flax fiber-reinforced composite blade to meet deflection limits to ensure tower clearance, determine spar cap location and the required thickness at each span-wise station, and reduce mass to lower fatigue loads and extend useful life.”

Reducing Environmental Impact

As a result of the wind turbine blades being difficult to recycle commercially, various groups are studying methods to dispose of end-of-life blades in a more environmentally benign manner than landfilling, or to recapture material for reuse in subsequent applications. Another approach, and the one taken in the Korean study, is to reduce the environmental impact at the start of the design process by opting to use natural fiber reinforcements rather than carbon or glass fibers.

Natural fibers are said to be far less energy intensive to grow, harvest, and clean than the production of carbon or glass fibers. Second, since they are derived from living plants, natural fibers sequester carbon dioxide and nitrogen during their growing cycle and then keep those gases locked up in plant tissue during their use as a composite reinforcement. 

The final blade design uses a hybrid of natural fiber and E-glass reinforcement. It is slightly heavier (7.4%) than the original glass fiber-reinforced blade, but that additional weight was deemed technically tolerable to gain the environmental benefits of using natural fibers. Currently, the wind blades are being produced using vacuum-assisted resin infusion molding.

Sources: Press materials received from the company and additional information gleaned from the company’s website.

Share This Article

Subscribe to our FREE magazine, FREE email newsletters or both!

Join over 90,000 engineering professionals who get fresh engineering news as soon as it is published.


About the Author

DE Editors's avatar
DE Editors

DE’s editors contribute news and new product announcements to Digital Engineering.
Press releases may be sent to them via [email protected].

Follow DE
#26369