History of 3D Printing

3D Printing started as an extremely expensive, niche method of manufacturing that held few advantages over more traditional methods, and over the course of its lifetime became much more advanced.

The origins of 3D printing go all the way back to the 1980s. Dr. Hideo Kodama of the Nagoya Industrial Research Institute published research in 1981 on a technique very similar to what eventually would be called stereolithography (SLA).

However, it wasn’t until 1987 when a patent was first filed and the first SLA printer was created by Charles Hull, who is widely considered the true inventor of 3D printing.

Over the next two years, Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM) printers were first developed, heating up the competition in the 3D printing space. No other major developments came along until the 90s, when Binder Jetting technology and 3D printers capable of making wax molds used for injection molding were invented.

By the early 2000s, 3D printers had become capable of printing functional human organs, though these mostly existed more as prototypes and proofs of concept rather than organs worthy of transplanting. However, there were some successful transplants of 3D printed organs – most notably 10 patients received bladder transplants using bladders printed from their existing bladder tissue. Best of all, this method of organ transplant eliminates the risk of the body rejecting the transplanted organ since it’s made of the patient’s own tissue.

Download the paper to read more about the history of 3D Printing.

Fill out the information below to download the resource.

By downloading this content, I agree to receive the DE 24/7 Newswire, a twice weekly free email newsletter (you may choose to opt-out in the newsletter).

Latest News

AMGTA Shares Findings on Sustainability of Powder and Wire Additive Feedstock
Research indicates, for one, that from an energy perspective, helium is the most sustainable method of gas atomization for metallic...

MATLABS Features Modelithics EXEMPLAR Library
Library for MATLAB includes almost 50 Microwave Global Models representing nearly 3,500 components for many component suppliers, company says.

Fictiv Demonstrates New AI Capabilities
Tool enables an upgrade of material selection for production parts.

ADDMAN Earns Qualification Project for U.S. Navy
This project focuses on the additive manufacturing (AM) of copper-nickel (CuNi) components in submarine fittings.

FREE WEBINAR May 27: Addressing the Skilled Worker Shortage with Customized eLearning
In this webinar, you can find out how eLearning and learning management software can help companies fill the skilled trades...

 America Makes’ Spring 2024 TRX Explores AM Advancements
The event was a knowledge hub for industry leaders to network and share innovative approaches across design, material, process and...

All posts