Materialise Develops 3D Printed Oxygen Mask to Address Shortage of Ventilators 

Solution brought to hospitals quickly and in full compliance with safety regulations.

Solution brought to hospitals quickly and in full compliance with safety regulations.

Hospitals are in need of mechanical ventilators to treat COVID-19 patients. In response to this shortage, Materialise has developed the Materialise NIP Connector, a device to convert standard equipment available in most hospitals, into a mask to facilitate breathing for patients by creating positive pressure in the lungs.

These assembled masks allow clinicians to reduce the time patients need access to mechanical ventilators, which helps to reduce the strain on ventilator supplies. Materialise is now fast-tracking the regulatory registrations that are crucial to ensure the safety of patients and caregivers. The company expects to have the device broadly available for hospitals by mid-April.

Around the world, hospitals are looking for medical equipment capable of delivering air with added oxygen to treat critically ill coronavirus patients. Currently this treatment is carried out using mechanical ventilators, which are undersupplied. As a result, clinicians are exploring different methods to apply positive end expiratory pressure (PEEP) to the lungs of COVID-19 patients without the use of a ventilator. 

Materialise has developed a solution to deliver oxygen and create high positive pressure without the use of a ventilator. A 3D-printed connector converts standard equipment already available in most hospitals into a  non-invasive PEEP mask (NIP) that can be connected to the oxygen supply (to facilitate breathing for coronavirus patients). This solution gives patients an extended period of time before mechanical ventilators are required for treatment, and helps transition them off ventilators earlier, freeing up these devices for patients in critical need. By using standard medical equipment, including a non-invasive ventilation (NIV) mask, a filter and a PEEP valve, the solution is simple and familiar to use for medical professionals.

Certified Medical Manufacturing        

Although 3D printing allows for fast and local manufacturing of medical devices, it is critical to comply with regulations to ensure the safety of patients and caregivers. Materialise is now fast-tracking the regulatory registration (in Europe and the U.S.). In parallel, Materialise is supporting a clinical trial to test the clinical impact of its use on COVID 19 patients and expects first results to be available within the next two weeks.

“3D printing is playing a crucial role in fighting the global coronavirus pandemic by making it possible to develop innovative solutions and have them available worldwide very quickly,” says Brigitte De Vet, vice president of Materialise Medical. “At the same time, it is crucial that the medical products we put on the market are safe and effective. Materialise has decades of experience in certified medical 3D printing which allows us to bring 3D printed devices to the market quickly and safely.”

The Materialise NIP Connectors will be manufactured at the company’s ISO 13485 certified facilities in Belgium and Plymouth, Michigan and on-site 3D printing facilities of qualified partners. Materialise is looking for partners to get this solution to as many patients as possible.

3D printing is a digital manufacturing technology that makes it possible to create products quickly and locally. As travel and transport become more difficult and speed is of the essence, the ability to manufacture locally becomes more important. In this case, the product was designed in Belgium and can be printed at a Materialise certified facility, or at a hospital that has the capability to do so in a reliable manner. 

In addition to the NIP solution, Materialise engineers have developed several innovations to support treatment and containment of the coronavirus, including: 

  • A 3D printed door handle attachment, which allows users to open doors using covered forearms rather than bare hands in an effort to reduce direct contact with potentially contaminated shared door handles.  
  • A 3D printed shopping cart handle to allow users to steer carts with their arms rather than touching handles with bare hands.  
  • A 3D printed connector to adapt Scuba masks to allow for air filtration and oxygen supply.

Photos and video of the 3D printed conversion kit and complete masks are available, as well as a blog post with more background information.  People who have question or want to collaborate with Materialise can get in contact through [email protected].

Sources: Press materials received from the company and additional information gleaned from the company’s website.

More Materialise Coverage

Share This Article

Subscribe to our FREE magazine, FREE email newsletters or both!

Join over 90,000 engineering professionals who get fresh engineering news as soon as it is published.


About the Author

DE Editors's avatar
DE Editors

DE’s editors contribute news and new product announcements to Digital Engineering.
Press releases may be sent to them via [email protected].

Follow DE
#23830